Search results for "Cavity materials"

showing 2 items of 2 documents

The Ferroelectric Photo-Groundstate of SrTiO$_3$: Cavity Materials Engineering

2021

Significance Controlling collective phenomena in quantum materials is a promising route toward engineering material properties on demand. Strong THz lasers have been successful at inducing ferroelectricity in S r T i O 3 . Here we demonstrate, from atomistic calculations, that cavity quantum vacuum fluctuations induce a change in the collective phase of S r T i O 3 in the strong light–matter coupling regime. Under these conditions, the ferroelectric phase is stabilized as the ground state, instead of the quantum paraelectric one. We conceptualize this light–matter hybrid state as a material photo ground state: Fundamental properties such as crystal structure, phonon frequencies, and the col…

Phase transitionMaterials science3SrTiO3PolaritonsFOS: Physical sciences02 engineering and technologyStrong light–matter hybrids01 natural sciencesSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials SciencequantumQuantum state0103 physical sciencesPolariton010306 general physicsquantum paraelectric to ferroelectric transitionsQuantumCavity materials engineeringQuantum fluctuationcavity materials engineeringCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsSrTiOMaterials Science (cond-mat.mtrl-sci)Quantum paraelectric to ferroelectric transitionComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyFerroelectricitystructural phase-transitionscavity phase diagramExcited statetrong light-matter hybrids0210 nano-technologyGround statePhysics - Computational Physicspolaritons
researchProduct

Phonoritons as Hybridized Exciton-Photon-Phonon Excitations in a Monolayer h -BN Optical Cavity

2021

[EN] A phonoriton is an elementary excitation that is predicted to emerge from hybridization between exciton, phonon, and photon. Besides the intriguing many-particle structure, phonoritons are of interest as they could serve as functional nodes in devices that utilize electronic, phononic, and photonic elements for energy conversion and thermal transport applications. Although phonoritons are predicted to emerge in an excitonic medium under intense electromagnetic wave irradiation, the stringent condition for their existence has eluded direct observation in solids. In particular, on-resonance, intense pumping schemes have been proposed, but excessive photoexcitation of carriers prevents op…

PhysicsPhononExcitonEuropean researchPhysics::OpticsGeneral Physics and Astronomy01 natural sciences7. Clean energySettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials ScienceQuantum mechanicsCavity materials0103 physical sciences010306 general physicsPhysical Review Letters
researchProduct